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Summary. Using the quasi-geometric optics formulation for media with inhomogeneous index
of refraction, the problem of determining the electromagnetic field distribution at the mirrors of
an optical resonator filled with a medium displaying a parabolic variation of the index of refraction
has been reduced to a simpler problem of an equivalent empty optical resonator. From the derived
system of integral equations the equivalent generalized parameters of the considered resonator are
determined. The presented approach allows to compare the diffraction losses, the resonant
conditions and the mode patterns of a resonator in question with respect to an equivalent one.

Introduction. The majority of papers on the subject of laser resonators deal
with the theory of empty optical resonators or resonators filled with optically homo-
geneous media. However, the active media of lasers may, for various reasons (e.g.
[1—7]), be optically inhomogeneous. An inhomogeneous medium inserted between
the resonator mirrors affects the properties of the optical resonator, i.e. it changes
the mode patterns, diffraction losses and conditions of resonance.

Following the increasing interest in resonators, filled with inhomogeneous media,
the demand arises to solve the problem of the field distribution, diffraction losses
and resonant frequency for such resonators. The exact solution of Maxwell’s equation
with appropriate boundary conditions, even when available, is too complicated
to be used for determining the information about the resonator in question. In the
literature, there is the Kogelnik’s well-known approach [8] based on the ray matrix
formulation of geometric optics and the imaging rules obtained with the use of
formalism of Fresnel diffraction theory.

The purpose of this paper is to present the theory of an optical resonator with
a medium displaying a parabolic variation of the index of refraction developed
from the formulation of quasi-geometric optics for inhomogeneous media proposed
by Eichmann [9]. The choice of such a form of the index of refraction is justified
since the parabolic variation of the index comprises a broad variety of functions
describing the actual distribution of the index of refraction. EBichmann’s formu-
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lation of quasi-geometric optics for inhomogeneous media is analogous to Feyn-
man’s approach [10] to quantum mechanics.

Quasi-geometric-optics approach for media of inhomogeneous index of refraction.
Assume that at any surface o; of an inhomogeneous medium, the distribution of the-
electromagnetic field ¥ (xy, yy,2;) is known. The distribution w (x,y, z;-+¢),
where € is a small distance in the direction of coordinate z can be found from the
relation [9, 10]:
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where 4 is an e-dependent normalization constant and k is the wave number in the:
medium. The optical path length
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taken along the path which makes the optical path length (2) an extremum; z (x, y, z)
is the inhomogeneous index of refraction of the medium. The dots represent
differentation with respect to z. Eq. (1) is true in the limit ¢—0.

The integral (1) has been presented for the first time by Feynman [10] as the
expression of the Huygens’ principle for matter waves in his approach to quantum
mechanics. Basing on Eq. (1) Eichmann [9] proposed the formulation of quasi-
geometric optics for media with inhomogeneous index of refraction.

At any arbitrary distance z, ¥ (x, y, z) can be obtained by iterating Eq. (1) by
distances ¢ along the z direction until z is reached, resulting in
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o) o0 1

ot ] 2
(5) C)C(x9ya Z, x1,J’1,Z1)=hmZZ f fexp[_lk S(xj+15yj+19 xjsyja G]X:
e — j=1

£-0
=4}

dx, dx; dx, dy, dys dy,
X . .

4. 4T A A A
= f exp [—ikS(x, ¥, z, %1, V1, 21) Dx (2)-Dy (2)

is the continuous-path integral [11]. In Eq. (5) it is assumed that x;,,,, },4+, are
the coordinates of the surface at which the disturbance w (x, y, z) is searched for.
The integral equation (4) gives the field distribution v (x, y, z) at any surface o (x, y, z)
if distribution w (x4, yy, z;) at a surface o; is known.






